
Ryan Wade, Nathan Volkert,
Daniel Griffen, Alex Berns

Iowa State University
Advisor: Arun Somani

Multi-Node Shared Application
Environment for Smart Home Systems

Project Molecule Team May1739

Overview
Problem Statement

 Smart homes are often cloud dependent which creates a single point of failure for their system

 Many existing smart home application are not interoperable with other systems

Solution

 Locally distributed to multiple nodes, reducing dependency upon cloud for operation of sys-
tem

 Open source standard, with a unified application interface, allows other developers to create
new functionality

 Fault tolerant by design to reduce the chance of system wide failure

Intended Users

 Enthusiasts seeking to integrate their disparate smart home systems into a single useable envi-
ronment

 Business wanting to connect their product to the Molecule API

Operating Environment

 Project Molecule is designed to run on most Linux operating systems

Requirements
Functional Requirements

 A Device shall be able to host more than one Application

 Applications will be isolate from other processes on the Device

 Applications shall be able to communicate via Messages

 Messages shall contain origin, routing, Action (protocol), data, and stream infor-
mation

 All Messages shall be routed by the Device

 An Application will be restricted to send/receive/broadcast Actions as defined in a configura-
tion file available at system startup

 Devices shall synchronize configuration and user data with each other

 Messages shall be routed between Devices via a network

 A single Device failure must not bring down a multi-Device setup

Non-Functional Requirements

 Tools will be provided to create 3rd party Applications

 A stable API will be exposed and documented for 3rd party development

 Tools will be provided to configure and manage Devices

System Design

General Info

Green boxes represents a thread

White boxes represents a process

Red arrows denote messages originating outside the device

Purple arrows denote messages originating inside the device

-> right before a block designates that the message will be processed and routed by that block

-|- right before a block designates a terminal where a response is generated and sent back

-|-|- before the network layer denotes that the terminal is in another device

… denotes that an undefined number of application processes can be running at once

Client: Forwards message to appropriate server and waits for response

Permissions: Validates the source/destination/action pair of a message ensuring:

 SOURCE can send or broadcast the ACTION

 DESTINATION can process the ACTION

State Action Handler: Handles "STATE" requests from outside the Atom to create, read,
modify, or delete key-value pairs in the state

App Manager Action Handler: Handles "APP_MANAGEMENT" application lifecycle actions,
such as install, start, or stop, and updates the Action Routing Table in state appropriately

Router: Routes a message to its destination device/application

Application: 3rd Party executable which is isolated in a separate process

App # IPC_A: The request response Unix Socket for Atom Forwarded Messages

App # IPC_B: The request response Unix Socket for Application Originating Messages

State: Wraps a redis key-value database

Synchronization: Handles changes to state, and synchronizes them across devices

Technical Details
Language

 Rust

 Development Language

 Memory Safe

Tools

 Visual Studio Code

 IDE Used by All Team Members

 Bash for Windows

Library

 Tokio

 Provides an Async network Framework

 Serde

 Serialize Data for Storage and Transmis-
sion

 Redis Library

 Communication with Redis Database

 Rust-Crypto

 Securing Network Communications

Project Management & Testing
Project Management

 Gitlab

 Continuous Integration

 Version Control

 Weekly Team Meetings

 Scrum Meetings

 Advisor Meetings

 Collaboration Meetings

 More than 1200 Man-Hours

Project Testing

 Modularized Code

 Regression Testing

 Automated with Gitlab

 Module Testing

 Ensure Modules Work Before Integration

 Integration Testing

 Applications Communicate Across Devices

 Network Failures Handled Gracefully

 Redundant Application Switching

