
Ryan Wade, Nathan Volkert,
Daniel Griffen, Alex Berns

Iowa State University
Advisor: Arun Somani

Multi-Node Shared Application
Environment for Smart Home Systems

Project Molecule Team May1739

Overview
Problem Statement

 Smart homes are often cloud dependent which creates a single point of failure for their system

 Many existing smart home application are not interoperable with other systems

Solution

 Locally distributed to multiple nodes, reducing dependency upon cloud for operation of sys-
tem

 Open source standard, with a unified application interface, allows other developers to create
new functionality

 Fault tolerant by design to reduce the chance of system wide failure

Intended Users

 Enthusiasts seeking to integrate their disparate smart home systems into a single useable envi-
ronment

 Business wanting to connect their product to the Molecule API

Operating Environment

 Project Molecule is designed to run on most Linux operating systems

Requirements
Functional Requirements

 A Device shall be able to host more than one Application

 Applications will be isolate from other processes on the Device

 Applications shall be able to communicate via Messages

 Messages shall contain origin, routing, Action (protocol), data, and stream infor-
mation

 All Messages shall be routed by the Device

 An Application will be restricted to send/receive/broadcast Actions as defined in a configura-
tion file available at system startup

 Devices shall synchronize configuration and user data with each other

 Messages shall be routed between Devices via a network

 A single Device failure must not bring down a multi-Device setup

Non-Functional Requirements

 Tools will be provided to create 3rd party Applications

 A stable API will be exposed and documented for 3rd party development

 Tools will be provided to configure and manage Devices

System Design

General Info

Green boxes represents a thread

White boxes represents a process

Red arrows denote messages originating outside the device

Purple arrows denote messages originating inside the device

-> right before a block designates that the message will be processed and routed by that block

-|- right before a block designates a terminal where a response is generated and sent back

-|-|- before the network layer denotes that the terminal is in another device

… denotes that an undefined number of application processes can be running at once

Client: Forwards message to appropriate server and waits for response

Permissions: Validates the source/destination/action pair of a message ensuring:

 SOURCE can send or broadcast the ACTION

 DESTINATION can process the ACTION

State Action Handler: Handles "STATE" requests from outside the Atom to create, read,
modify, or delete key-value pairs in the state

App Manager Action Handler: Handles "APP_MANAGEMENT" application lifecycle actions,
such as install, start, or stop, and updates the Action Routing Table in state appropriately

Router: Routes a message to its destination device/application

Application: 3rd Party executable which is isolated in a separate process

App # IPC_A: The request response Unix Socket for Atom Forwarded Messages

App # IPC_B: The request response Unix Socket for Application Originating Messages

State: Wraps a redis key-value database

Synchronization: Handles changes to state, and synchronizes them across devices

Technical Details
Language

 Rust

 Development Language

 Memory Safe

Tools

 Visual Studio Code

 IDE Used by All Team Members

 Bash for Windows

Library

 Tokio

 Provides an Async network Framework

 Serde

 Serialize Data for Storage and Transmis-
sion

 Redis Library

 Communication with Redis Database

 Rust-Crypto

 Securing Network Communications

Project Management & Testing
Project Management

 Gitlab

 Continuous Integration

 Version Control

 Weekly Team Meetings

 Scrum Meetings

 Advisor Meetings

 Collaboration Meetings

 More than 1200 Man-Hours

Project Testing

 Modularized Code

 Regression Testing

 Automated with Gitlab

 Module Testing

 Ensure Modules Work Before Integration

 Integration Testing

 Applications Communicate Across Devices

 Network Failures Handled Gracefully

 Redundant Application Switching

